首页> 外文OA文献 >Decomposition optimization algorithms for distributed multiple radar systems
【2h】

Decomposition optimization algorithms for distributed multiple radar systems

机译:分布式多雷达系统的分解优化算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Distributed radar systems are capable of enhancing the detection performance by using multiple widely spaced distributed antennas. With prior statistic information of targets, resource allocation is of critical importance for further improving the system’s achievable performance. In this paper, the total transmitted power is minimized at a given mean-square target-estimation error.We derive two iterative decomposition algorithms for solving this nonconvex constrained optimization problem, namely, the optimality condition decomposition (OCD)-based and the alternating direction method of multipliers (ADMM)-based algorithms. Both the convergence performance and the computational complexity of our algorithms are analyzed theoretically, which are then confirmed by our simulation results. The OCD method imposes a much lower computational burden per iteration, while the ADMM method exhibits a higher per-iteration complexity, but as a benefit of its significantly faster convergence speed, it requires less iterations. Therefore, theADMMimposes a lower total complexity than the OCD. The results also show that both of our schemes outperform the state-of-the-art benchmark scheme for the multiple target case, in terms of the total power allocated, at the cost of some degradation in localization accuracy. For the single-target case, all the three algorithms achieve similar performance. Our ADMM algorithm has similar total computational complexity per iteration and convergence speed to those of the benchmark.
机译:分布式雷达系统能够通过使用多个宽间隔的分布式天线来增强检测性能。利用目标的先前统计信息,资源分配对于进一步提高系统可实现的性能至关重要。本文在给定均方根目标估计误差的情况下将总发射功率最小化。我们推导了两种迭代分解算法来解决该非凸约束优化问题,即基于最优条件分解(OCD)和交替方向基于乘数(ADMM)的算法。从理论上分析了算法的收敛性能和计算复杂度,然后通过仿真结果进行了验证。 OCD方法每次迭代带来的计算负担要低得多,而ADMM方法展现出更高的每次迭代复杂度,但是由于其收敛速度显着加快,它需要较少的迭代。因此,ADMM的总复杂度低于OCD。结果还表明,就分配的总功率而言,我们的两种方案均优于多目标案例的最新基准方案,但会牺牲一些定位精度。对于单目标情况,这三种算法均达到相似的性能。我们的ADMM算法每次迭代的总计算复杂度和收敛速度与基准测试相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号